Consistency Properties of Model Selection Criteria in Multiple Linear Regression
نویسنده
چکیده
This paper concerns the asymptotic properties of a class of criteria for model selection in linear regression models, which covers the most well known criteria as e.g. MALLOWS' Cp, CV (cross-validation), GCV ( generalized cross-validation), AKAIKE's AIC and FPE as well as SCHWARZ' BIC. These criteria are shown to be consistent in the sense of selecting the true or larger models, assuming i.i.d. errors and the possible inadequacy of the linear model. Additionally we prove that BIC-type criteria select the true model if the sample size is converging to infinity. These consistency properties are completed by convergence results for the risk and loss of the estimated regression functions.
منابع مشابه
Determination of critical properties of Alkanes derivatives using multiple linear regression
This study presents some mathematical methods for estimating the critical properties of 40 different types of alkanes and their derivatives including critical temperature, critical pressure and critical volume. This algorithm used QSPR modeling based on graph theory, several structural indices, and geometric descriptors of chemical compounds. Multiple linear regression was used to estimate the ...
متن کاملQuantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression
Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...
متن کاملAsymptotic properties of the sample mean in adaptive sequential sampling with multiple selection criteria
We extend the method of adaptive two-stage sequential sampling toinclude designs where there is more than one criteria is used indeciding on the allocation of additional sampling effort. Thesecriteria, or conditions, can be a measure of the targetpopulation, or a measure of some related population. We developMurthy estimator for the design that is unbiased estimators fort...
متن کاملComprehensive causal analysis of occupational accidents’ severity in the chemical industries; A field study based on feature selection and multiple linear regression techniques
Introduction: The causal analysis of occupational accidents’ severity in the chemical industries may improve safety design programs in these industries. This comprehensive study was implemented to analyze the factors affecting occupational accidents’ severity in the chemical industries. Methods and Materials: An analytical study was conducted in 22 chemical industries during 2016-2017. The stu...
متن کاملConsistent Model Selection Criteria on High Dimensions
Asymptotic properties of model selection criteria for high-dimensional regression models are studied where the dimension of covariates is much larger than the sample size. Several sufficient conditions for model selection consistency are provided. Non-Gaussian error distributions are considered and it is shown that the maximal number of covariates for model selection consistency depends on the ...
متن کامل